The coming wave of confluent biosynthetic, bioinformational and bioengineering technologies

The coming wave of confluent biosynthetic, bioinformational and bioengineering technologies
  • Dalio, R. Principles. Simon & Schuster, New York (2017).

  • Dalio, R. Principles for dealing with the changing world order. Simon & Schuster, New York (2021).

  • Suleyman, M. & Bhaskar, M. The Coming Wave. Penguin Random House, Dublin (2023).

  • Modly, T. Five megatrends and their implications for global defense and security. (www.pwc.co.uk/megatrends).

  • Ramírez, R. & Wilkinson, A. Strategic Reframing: The Oxford Scenario Planning Approach. Oxford University Press, Oxford, United Kingdom. (2016).

  • Miller, C. Chip War: The fight for the world’s most critical technology. Simon & Schuster, London (2022).

  • Lin, K. N. et al. A primordial DNA store and compute engine. Nat. Nanotechnol. (2024).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sun, J. et al. Living Synthelectronics: A new Era for bioelectronics powered by synthetic biology. Adv. Mater. 36, 2400110 (2024).

    CAS 

    Google Scholar 

  • Zhang, C. et al. Parallel molecular data storage by printing epigenetic bits on DNA. Nature 634, 824–832 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Dixon, T., Williams, T. C. & Pretorius, I. S. Sensing the future of bio-informational engineering. Nat. Commun. 12, 388 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhirnov, V. Semiconductor Synthetic Biology Roadmap, www.src.org (2018).

  • Rivnay, J. et al. Integrating bioelectronics with cell-based synthetic biology. Nat. Rev. Bioeng. (2025).

    Article 

    Google Scholar 

  • Dixon, T. A., Freemont, P. S., Johnson, R. A. & Pretorius, I. S. A global forum on synthetic biology: the need for international engagement. Nat. Commun. 13, 3516 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dixon, T., Williams, T. C. & Pretorius, I. S. Bioinformational trends in grape and wine biotechnology. Trends Biotechnol. 40, 124–135 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Capri, A. & Clark, R. Australia’s semiconductor national moonshot. Australian Strategic Policy Institute, Policy Brief, Report No. 63 (2022).

  • Munro B., Capri, A. & Clark, R. Australia’s semiconductor manufacturing moonshot. Australian Strategic Policy Institute, Special Report (2023).

  • Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Pretorius, I. S. & Boeke, J. D. Yeast 2.0—connecting the dots in the construction of the world’s first functional synthetic eukaryotic genome. FEMS Yeast Res. 18, foy032; https://doi.org/10.1093/femsyr/foy03210.1093/femsyr/foy032.

  • Servais, M. et al. Engineering brain-on-a-chip platforms. Nat. Rev. Bioeng. 2, 691–709 (2024).

    CAS 
    MATH 

    Google Scholar 

  • Dorkenwald, S. et al. Neuronal wiring diagram of an adult brain. Nature 634, 124–138 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sapkal, N. et al. Neural circuit mechanisms underlying context-specific halting in Drosophila. Nature 634, 191–200 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schlegel, P. et al. Whole-brain annotation and multi-connectome cell typing of Drosophila. Nature 634, 139–152 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Shiu, P. K. et al. A Drosophila computational brain model reveals sensorimotor processing. Nature 634, 210–219 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Llorente, B., Williams, T. C., Goold, G. D., Pretorius, I. S. & Paulsen, I. T. Harnessing bioengineered microbes as a versatile platform for space nutrition. Nat. Commun. 13, 6177 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dixon, T. A., Walker, R. K. S. & Pretorius, I. S. Visioning synthetic futures for yeast research within the context of current global techno-political trends. Yeast 40, 443–456 (2023).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Pretorius, I. S. Visualizing the next frontiers in wine yeast research. FEMS Yeast Res. 22, 1–11 (2022).

    CAS 
    MATH 

    Google Scholar 

  • Walker, R. K. S. & Pretorius, I. S. Synthetic biology for the engineering of complex wine yeast communities. Nat. Food 3, 249–254 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Tasmir, A., Tabor, J. J. & Voigt, C. A. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469, 212–215 (2011).

    ADS 

    Google Scholar 

  • Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C. & Voigt, C. A. Genetic programs constructed from layered logic gates in single cells. Nature 491, 249–253 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, L. et al. Robust data storage in DNA by de Bruijn graph-based de novo strand assembly. Nat. Commun. 13, 5361 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Cao, B. et al. Efficient data reconstruction: The bottleneck of large-scale application of DNA storage. Cell Rep. 43, 113699 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Church, G. M., Gao, Y. & Kosuri, S. Next-generation digital information storage in DNA. Science 337, 1628 (2012).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Goldman, N. et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494, 77–80 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Billerbeck, S., Walker, R. S. K. & Pretorius, I. S. 2024. Killer yeasts: Expanding frontiers in the age of synthetic biology. Trends Biotechnol. 42, 1081–1096 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Guo, Q. et al. Dual-emitting polyfluorene derivatives nanoparticles coupling bifunctional coreaction promoter Ag nanoparticles for ratiometric electrochemiluminescence bioanalysis. Sens. Actuators B: Chem. 385, 133657 (2023).

    CAS 
    MATH 

    Google Scholar 

  • Espinosa, M. I., Williams, T. C., Pretorius, I. S. & Paulsen, I. T. Benchmarking two Saccharomyces cerevisiae laboratory strains for growth and transcriptional response to methanol. Synth. Syst. Biotechnol. 4, 180–188 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, T. C., Pretorius, I. S. & Paulsen, I. T. Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol. 34, 371–381 (2016).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Williams, T., Xu, X., Ostrowski, M., Pretorius, I. S. & Paulsen, I. T. Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast. Synth. Biol. 2, 1 (2017).

    Google Scholar 

  • Xu, X., Williams, T. C., Divne, C., Pretorius, I. S. & Paulsen, I. T. Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1‑dependent potassium influx mechanism for propionic acid tolerance. Biotechnol. Biofuels 12, 97 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, X. et al. Trimming the genomic fat: minimising and re-functionalising genomes using synthetic biology. Nat. Commun. 14, 1984–1994 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Leung, C. M. et al. A guide to the organ- on- a- chip. Nat. Rev. 2, 33 (2022).

    CAS 
    MATH 

    Google Scholar 

  • Mahajan, G. et al. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. Microbiome 10, 201 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–558 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Vázquez Torres, S. et al. De novo design of high-affinity binders of bioactive helical peptides. Nature 626, 435–442 (2024).

    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hutchison, C. A. et al. Design and synthesis of a minimal bacterial genome. Science 351, 1414 (2016).

    CAS 
    MATH 

    Google Scholar 

  • Kutyna, D. R. et al. Construction of a synthetic Saccharomyces cerevisiae pan-genome neo-chromosome. Nat. Commun. 620, 1089–1100 (2023).

    MATH 

    Google Scholar 

  • Schindler, D. et al. Design, construction, and functional characterization of a tRNA neochromosome in yeast. Cell 186, 5237–5253.e22 (2023).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Symons, J. et al. 2024. Engineering biology and climate change mitigation: A policy agenda. Nat. Commun. 15, 2669 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Yukawa, H. et al. Quantum life science: biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, quantum biology, and quantum biotechnology. R. Soc. Chem. (2025).

    Article 
    MATH 

    Google Scholar 

  • link